Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1942): 20202670, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434462

RESUMO

Early-life conditions have critical, long-lasting effects on the fate of individuals, yet early-life activity has rarely been linked to subsequent survival of animals in the wild. Using high-resolution GPS and body-acceleration data of 93 juvenile white storks (Ciconia ciconia), we examined the links between behaviour during both pre-fledging and post-fledging (fledging-to-migration) periods and subsequent first-year survival. Juvenile daily activity (based on overall dynamic body acceleration) showed repeatable between-individual variation, the juveniles' pre- and post-fledging activity levels were correlated and both were positively associated with subsequent survival. Daily activity increased gradually throughout the post-fledging period, and the relationship between post-fledging activity and survival was stronger in individuals who increased their daily activity level faster (an interaction effect). We suggest that high activity profiles signified individuals with increased pre-migratory experience, higher individual quality and perhaps more proactive personality, which could underlie their superior survival rates. The duration of individuals' fledging-to-migration periods had a hump-shaped relationship with survival: higher survival was associated with intermediate rather than short or long durations. Short durations reflect lower pre-migratory experience, whereas very long ones were associated with slower increases in daily activity level which possibly reflects slow behavioural development. In accordance with previous studies, heavier nestlings and those that hatched and migrated earlier had increased survival. Using extensive tracking data, our study exposed new links between early-life attributes and survival, suggesting that early activity profiles in migrating birds can explain variation in first-year survival.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano
2.
J Anim Ecol ; 87(6): 1627-1638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120893

RESUMO

Early arrival at breeding grounds is of prime importance for migrating birds as it is known to enhance breeding success. Adults, males and higher quality individuals typically arrive earlier, and across years, early arrival has been linked to warmer spring temperatures. However, the mechanisms and potential costs of early arrival are not well understood. To deepen the understanding of arrival date differences between individuals and years, we studied them in light of the preceding spring migration behaviour and atmospheric conditions en route. GPS and body acceleration (ACC) data were obtained for 35 adult white storks (Ciconia ciconia) over five years (2012-2016). ACC records were translated to energy expenditure estimates (overall dynamic body acceleration; ODBA) and to behavioural modes, and GPS fixes were coupled with environmental parameters. At the interindividual level (within years), early arrival was attributed primarily to departing earlier for migration and from more northern wintering sites (closer to breeding grounds), rather than to migration speed. In fact, early-departing birds flew slower, experienced weaker thermal uplifts and expended more energy during flight, but still arrived earlier, emphasizing the cost and the significance of early departure. Individuals that wintered further south arrived later at the breeding grounds but did not produce fewer fledglings, presumably due to positive carry-over effects of advantageous wintering conditions (increased precipitation, vegetation productivity and daylight time). Therefore, early arrival increased breeding success only after controlling for wintering latitude. Males arrived slightly ahead of females. Between years, late arrival was linked to colder temperatures en route through two different mechanisms: stronger headwinds causing slower migration and lower thermal uplifts resulting in longer stopovers. This study showed that distinct migratory properties underlie arrival time variation within and between years. It highlighted (a) an overlooked cost of early arrival induced by unfavourable atmospheric conditions during migration, (b) an important fitness trade-off in storks between arrival date and wintering habitat quality and (c) mechanistic explanations for the negative temperature-arrival date correlation in soaring birds. Such understanding of arrival time can facilitate forecasting migrating species responses to climate changes.


Assuntos
Migração Animal , Cruzamento , Animais , Aves , Mudança Climática , Feminino , Masculino , Estações do Ano
3.
Sci Rep ; 6: 27976, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328982

RESUMO

Although many birds are socially monogamous, most (>75%) studied species are not strictly genetically monogamous, especially under high breeding density. We used molecular tools to reevaluate the reproductive strategy of the socially monogamous white stork (Ciconia ciconia) and examined local density effects. DNA samples of nestlings (Germany, Spain) were genotyped and assigned relationships using a two-program maximum likelihood classification. Relationships were successfully classified in 79.2% of German (n = 120) and 84.8% of Spanish (n = 59) nests. For each population respectively, 76.8% (n = 73) and 66.0% (n = 33) of nests contained only full-siblings, 10.5% (n = 10) and 18.0% (n = 9) had half-siblings (at least one nestling with a different parent), 3.2% (n = 3) and 10.0% (n = 5) had unrelated nestlings (at least two nestlings, each with different parents), and 9.5% (n = 9) and 6.0% (n = 3) had "not full-siblings" (could not differentiate between latter two cases). These deviations from strict monogamy place the white stork in the 59(th) percentile for extra-pair paternity among studied bird species. Although high breeding density generally increases extra-pair paternity, we found no significant association with this species' mating strategies. Thus although genetic monogamy is indeed prominent in the white stork, extra-pair paternity is fairly common compared to other bird species and cannot be explained by breeding density.


Assuntos
Cruzamento/métodos , Paternidade , Comportamento Sexual Animal/fisiologia , Animais , Aves/genética , Feminino , Frequência do Gene/genética , Genótipo , Alemanha , Funções Verossimilhança , Masculino , Repetições de Microssatélites/genética , Reprodução , Espanha
4.
J Anim Ecol ; 85(4): 938-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27046512

RESUMO

Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. Juveniles used flapping flight vs. soaring flight 23% more than adults and were estimated to expend 14% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Mortalidade , Fatores Etários , Animais , Comportamento Animal , Metabolismo Energético , Tecnologia de Sensoriamento Remoto , Comportamento Social
5.
Mov Ecol ; 1(1): 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25709820

RESUMO

Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...